Alpha-1 Antitrypsin Deficiency and Hepatic Transplantation

Kunskap är vår medicin

Greg Nowak, MD, PhD
from the Division of Transplantation Surgery,
Department for Clinical Science, Intervention and Technology CLINTEC, Karolinska Institute
A1AT and hepatic Tx

• what do we know?
• what don’t know?
• what can we know more?
• what can we do more?
50 years ago…

• Laurell C-B, Eriksson S
 "The electrophoretic alpha-1 globulin pattern of serum in alpha-1 antitrypsin deficiency”

• Starzl TE et al
 "Homotransplantation of the liver in humans”
 Surg Gynecol Obstet 1963;117:659-676
Liver transplantation in A1AT patients - results

- 1% of all adult liver transplants
- 4% of pediatric liver transplants
- Patient survival: 1 yr 3 yr 5 yr 10yr
 90% 88% 85% 78%
Alpha-1 Antitrypsin deficiency

✓ rare indication for liver TX (1%)
✓ neonatal hepatitis/cholestasis in 10% of ZZ (2-3% cirrhosis); jaundice
✓ in adults; 30-40% of ZZ develop cirrhosis usually in their 50’s; portal hypertension and lung disease
✓ risk of liver cancer increased x20
✓ liver transplantation normalize A1AT levels
More Knowledge needed

• we need to better study lung function before and after liver transplantation to find answers on what a normalized level of A1AT means for lung function in A1AT ZZ patients

• hepatic transplantation before cirrhosis or combine lungs/liver Tx needed?
A1AT phenotypes

<table>
<thead>
<tr>
<th></th>
<th>Pi MM</th>
<th>Pi MZ</th>
<th>Pi SS</th>
<th>Pi SZ</th>
<th>Pi ZZ</th>
<th>Null</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>No risk</td>
<td>Minimal risk</td>
<td>No risk</td>
<td>Minimal risk</td>
<td>High risk</td>
<td>High risk</td>
</tr>
<tr>
<td>Values</td>
<td>20-48</td>
<td>17-33</td>
<td>15-33</td>
<td>8-16</td>
<td>2,5-7</td>
<td>0 umol/l</td>
</tr>
<tr>
<td></td>
<td>150-350</td>
<td>90-210</td>
<td>100-200</td>
<td>75-120</td>
<td>20-45</td>
<td>0 mg/dl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>No risk</th>
<th>Minimal risk</th>
<th>No risk</th>
<th>Minimal risk</th>
<th>High risk</th>
<th>No risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Values</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Etiology of Cirrhosis in Patients With Splenic Artery Aneurysm Rupture

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>Number of Patients</th>
<th>Percent of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-1 AT deficiency</td>
<td>7</td>
<td>41</td>
</tr>
<tr>
<td>Cholestatic liver disease (PBC/PSC)</td>
<td>4</td>
<td>24</td>
</tr>
<tr>
<td>ETOH cirrhosis</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Autoimmune hepatitis</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Cryptogenic</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>HCV</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Hemochromatosis</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

Splenic artery aneurysm

65 % mortality risk after rupture

Treatment:
- Expectation
- Embolization
- Ligation
- Splenectomy

No consensus
Liver transplantation for A1AT at Karolinska University Hospital

• 17 patients transplanted between
 – 7 children with AAT
 Sex 4M/3F, mean age 6.7±6.5, median 5.0 (range 0.65 – 17)
 – 6 adults with AAT
 Sex 3M/3F, mean age 45.1±19.2, median 49.3 (range 20.7 – 66.7)
 – 4 adults with incidental AAT diagnosis: sex 3M/1F, mean age 48.8±20.0, median 56.7 (range 19.4 – 62.5)
 • indications for Ltx: Alcoholic cirrhosis (1)
 NASH (1)
 HCV (1)
 AIH (1)
Outcome of Liver transplantation for α1–anti trypsin deficiency. A Nordic multicenter study.

More knowledge we get more effective medicine we have!

• we need to study lung function before and after liver transplantation to find answers on what a normalized level of A1AT means for lung function in A1AT ZZ patients

• liver transplantation before cirrhosis?
Alpha-1 Antitrypsin deficiency

✓ lung function/FEV1 after LTx: -45% - +77% (all patients are followed?)
✓ even if pulmonary functions decline, progression to end-stage lung disease is rare
✓ pulmonary function before and after LTx should be assessed by appropriate phenotyping rather than deficiency characterization
✓ development of lung cancer / smoking
Preoperative evaluation (1)

- demographic information on the recipient: sex, age, BMI, date of A1AT diagnosis, date of Tx, comorbidity (patients identification)
- donor characteristic: age, BMI, CIT,
- liver function tests: bilirubin, PK INR, GT, AST/ALT
 - only standard liver tests (*Pfermenges DC, 2013*) and A1AT levels (*Carey EJ, 2013*) are prognostic for liver disease due to A1AT
- presence of HCC
- MELD/PELD
Preoperative evaluation(2)

- pulmonary function tests/spirometry: TLC, FVC, FEV1, DLCO; and levels of A1AT
- incidence of splenic artery aneurysm; preTx DT angio?
- exclude combine lung-liver Tx
- information about lifestyle? smoking, alcohol, others?
- recipient phenotype MZ, SZ, ZZ
Postoperative evaluation (1)

- spirometry? how many do we have? should we call in all the patients now for new evaluation? use the last available?
- levels of A1AT, all available? last one or new evaluation right now?
- any use of lung rtg/CT
- need for control group?
Postoperative evaluation (2)

- patient/graft survival
- immunosuppression
- episodes of rejection/treatment and chronic kidney disease
- yearly liver blood tests or the last available?
statistics

✓ descriptive analyses: means/SD
✓ continuous variables: t-test
✓ categorical variables: chi-square test and Fisher’s exact test
✓ survival after LTx: Kaplan-Meyer analyses
Incidental A1AT liver graft

- heterozygous
- posttransplant cryptogen hepatit
- liver tests abnormality 6yrs after LTx
- 10 years liver biopsi with characteristic cytoplasmic inclusions
- should all patients with chronic hepatitis be tested?

Lee SM et al; 2012
additional groups?

• do we have heterozygous donors? outcome?
 (Stkhlm 3 donors to recipients with HCV, PSC, HCV/HCC); if "0" biopsy with suspicions of A1AT, should we genotype the donor? what information should we give to the recipient? should we check A1AT? recommendations t.ex. don’t smoke, etc?

• screening for noncirrhotic HCC?

• incidental A1AT with other indications (Stkhlm 4 pat.); have they been genotyped? should they? check A1AT levels?
Time schedule

2014
• end of Nov: protocol for discussion send to Helena, Allan, Gustaf and Tim

2015
• end of Jan: final protocol and participants / PhD student
• end of March: data collection
• end of June: results in abstract form
• October/next NTLG meeting: presentation of results and submission of results in manuscript form + Nordic recomendations
On-going research

✓ immunomodulation
✓ role of A1AT in acute liver failure
✓ role of hepatocytes Tx
✓
Prevalence of the PiMZ heterozygous state in patients with chronic liver diseases

From: Does the Heterozygous State of Alpha-1 Antitrypsin Deficiency Have a Role in Chronic Liver Diseases? Interim Results of a Large Case-Control Study. Regev A, et al. Manuscript
Hepatocytes Tx in A1AT

- non-cirrhotic patients
- in lung Tx patients (already on immunosuppression; anti-inflammatory effect/levels LTR-B4, IL-8)
- waiting list
- procedure: low risk, full postsurgical monitoring, repeated
- referral system / internal costs
Liver Cell Transplantation
Minimally Invasive Therapy for potentially Life-Threatening Diseases

ewa.ellis@ki.se
A1AT and hepatic Tx

- what do we know?

Liver transplantation is well accepted treatment for patients with cirrhosis; with good patient survival and restoration of A1AT levels.
A1AT and hepatic Tx

• what don’t know?

What is the effect of liver transplantation on lung function?
A1AT and hepatic Tx

• what can we know more?
Check incidence of
 1’ vascular complications
 2’ coexisting A1AT with other types of hepatitis.
A1AT and hepatic Tx

• what can we do more?

Hepatocytes Tx is an alternative to LTx in noncirrhotic patients.